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Abstract. Using the two-microelectrode voltage clamp 
technique in Xenopus laevis oocytes, we estimated Na +- 
K+-ATPase activity from the dihydroouabain-sensitive 
current (IDHo) in the presence of  increasing concentra- 
tions of  tetraethylammonium (TEA+; 0, 5, 10, 20, 40 
raM), a well-known blocker of  K + channels. The effects 
of TEA + on the total oocyte currents could be separated 
into two distinct parts: generation of a nonsaturating in- 
ward current increasing with negative membrane poten- 
tials (VM) and a saturable inhibitory component affecting 
an outward current easily detectable at positive V M. The 
nonsaturat ing component  appears to be a barium- 
sensitive electrodiffusion of  TEA + which can be de- 
scribed by the Goldman-Hodgkin-Katz equation, while 
the saturating component is consistent with the expected 
blocking effect of  TEA + on K + channels. Interestingly, 
this latter component  disappears when the Na+-K +- 
ATPase is inhibited by 10 gM DHO. Conversely, TEA + 
inhibits a component of  IDHO with a K D of 25 _+ 4 rnM at 
+50 mV. As the TEA+-sensitive current present in IDHO 
reversed at -75  mV, we hypothesized that it could come 
from an inhibition of  K + channels whose activity varies 
in parallel with the Na+-K+-ATPase activity. Supporting 
this hypothesis ,  the inward portion of  this TEA +- 
sensitive current can be completely abolished by the ad- 
dition of 1 mM Ba 2+ to the bath. This study suggests that, 
in X. laevis oocytes, a close link exists between the Na- 
K-ATPase activity and TEA+-sensitive K + currents and 
indicates that, in the absence of effective K + channel 
inhibitors, IDHO does not exclusively represent the Na +- 
K+-ATPase-generated current. 
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Introduction 

The Na+-K+-ATPase or Na + pump is an ubiquitous 
plasma membrane active transporter responsible for es- 
tablishing Na + and K + concentration gradients in animal 
cells. The concentration gradients for Na + and K + are 
used as an energy source to maintain membrane electri- 
cal potential and to drive a variety of  Na+-coupled trans- 
porters. The kinetics of  the Na+-K+-ATPase has been 
studied for a number of  years (see [6], for a review) and 
detailed descriptions of  specific parts of  the mechanism 
are now becoming available [1, 2, 13, 15, 18, 23, 24, 27]. 

Experiments performed on cardiac cells or oocytes 
have recently suggested that Na + binding to its extracel- 
lular site occurs through an access channel experiencing 
a large fraction of  the membrane electrical field [8, 10, 
20]. The fact that the affinity of  K + for its extracellular 
site is significantly decreased by a positive intracellular 
potential (VM) [19, 23, 26] suggests that K + binding may 
also use the same access channel. This phenomenon is 
thought to be responsible for the reduction in the pump 
activity observed at positive V M in X. Iaevis oocytes, 
which generates a characteristic negative slope in the 
pump I-V curve. The possibility of  interfering with the 
K + binding process using an agent that could block the 
access channel was our first reason to initiate a series of  
experiments aimed at detecting the effect of  tetraethyl- 
anamonium (TEA +) on the dihydroouabain-sensitive cur- 
rent (IDHo) in X. laevis oocytes. Previous reports have 
indicated that TEA + could interfere directly with the Na § 
pump in red blood cells and muscles [21, 28]. 

The determination of  IDHO in oocytes is a convenient 
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way  to obtain an estimate of the Na§ activity 
and has often been  used in  the past to study the Na  § 
pump current-voltage relationship (I-V curve) [13, 18, 
19, 20, 23, 26, 27]. To be accurate, the determinat ion of 
/DHO requires that the inhibi tor  used be specific for the 
Na+-K+-ATPase and that no other ionic currents change 
as a consequence  of  pump inhibit ion.  Al though ouabain  
and d ihydroouabain  are acknowledged to be highly spe- 
cific inhibitors for the Na + pump,  K + activities in the 
unst irred layers on both sides of  the membrane  are bound  
to change fo l lowing Na+-pump inhibi t ion,  leading to 
changes in  K + currents. For  this reason, several investi-  
gators have used t e t rae thy lammonium (TEA +) and bar- 
ium (Ba 2+) to inhibi t  K + currents while measur ing  1DHO 
[19, 20, 23, 26, 27]. However,  none  of these inhibitors is 
totally effective and the possibi l i ty remains  that IDHO can 
be contaminated  by some K + current  that does not  cancel  
out perfectly in the subtraction procedure required to 
obtain the ouabain-sensi t ive  current. This  is even more  
l ikely when  one considers a phenomenon  that has been 
studied in some detail  in  epithelial  tissue: the pump- leak  
mechanism.  It refers to the observat ion that whenever  a 
change in the Na+-pump activity is produced, a parallel  
change in basolateral  K + conductance  occurs [4, 14, 22]. 
This has been  recently conf i rmed at the single channel  
level where the "NPo"  (where N is the number  of  chan- 
nels and Po is the open probabil i ty)  of  an ATP-regula ted  
K + channel  was indirectly modula ted  by pump inhibi t ion 
[3, 12], The possibi l i ty that IDHO may conta in  a K + cur- 
rent  was an addit ional  reason to study the effect of  a K + 
channel  blocker  on  ID~O. 

Materials and Methods 

OOCYTES 

Mature oocytes (stage V or VI) [7] were obtained from anesthetized 
(3-aminobenzoic acid ethyl ester) X. laevis frogs. The follicular layer 
was removed by incubating oocytes in Barth's solution (see below for 
composition) containing collagenase (2-3 U/mi, Boehringer Mann- 
helm, Laval, QC) for 1-2 hr and defolliculated oocytes were stored at 
18~ in Barth's solution supplemented with 5% horse serum, 2.5 mM 
Na pyruvate, 100 U/ml penicillin and 0.1 mg/ml streptomycin. To 
stimulate Na+-pump current, intracellular [Na § was elevated by over- 
night incubation in a K+-ffee Barth's solution. Intracellutar [Na +] has 
been shown to increase to 20M0 mM using this procedure [13]. 

SOLUTIONS 

ELECTROPHYSIOLOGY 

Oocyte currents were measured with the two-microelectrode voltage 
clamp technique using a commercial amplifier (Oocyte Clamp model 
OC-725, Warner Instruments, Hamden, CT). The current and voltage 
microeiectrodes were filled with 1 M KC1 and had resistances ranging 
from 7 to 14 Ms The bath was referenced through an agar bridge 
containing 1 M KC1 and the bath current electrode was an Ag/AgC1 
pellet. The voltage pulse protocol was generated using an arbitrary 
waveform generator (model 75, Waveteck, San Diego, CA) and con- 
sisted of 10 alternative 100 msec duration pulses separated by 300 msec 
intervals at the resting potential (-50 mV). The voltage range studied 
was from -175 to +75 mV. Currents and voltages were converted to 
video signals (Neuro-Corder model DR-384, Neurndata, New York, 
NY) and recorded on commercial video tapes. The signals were low- 
pass filtered (cutoff frequency of 40 Hz) and digitized at 0.5-2.0 msec 
per point using a data acquisition system (Computerscope, RC Elec- 
tronics, Santa Barbara, CA). The current and voltage pulses were then 
automatically analyzed using a laboratory program taking the average 
of the signal between 80 and 100 msec after the onset of the pulse. 

Results 

REVERSIBILITY AND REPRODUCIBILITY OF THE T E A  + EFFECT 

W e  first tested the reversibil i ty of  the TEA + effect on the 
oocyte current-voltage (I-V) curve. As shown in Fig. 1, 
the effect of  adding 40 mM TEA + (N-methyl-D-glucamine 
replacement)  to the bath solution was to produce a large 
i n w a r d  cur ren t  t h r o u g h o u t  the vo l t age  r ange  stud-  
ied. The TEA + effect could be completely washed out 
since returning to the Barth* solution after a 5 min  ex- 
posure to 40 mM TEA + restored the oocyte I-V curve to 
its initial  position. A second applicat ion of 40 mM TEA + 
produced an effect similar to the first application and it 
was concluded that several concentrat ions of  TEA + could 
be accurately tested on the same oocyte as the effect 
appeared both reversible and reproducible.  

In  Fig. 1, it is apparent that T E A  + addit ion generates 
an inward current  throughout  the voltage range studied. 
Whi le  the observed effect for posit ive membrane  poten- 
t ials  (VM) is cons i s t en t  wi th  a b lockade  of  T E A  +- 
sensit ive K channels  (the classical effect of  TEA+), the 
effect observed for V M <  ----75 mV is certainly n o t J  
To i l luminate  the n a t u r e  9 f  this T E A  + effect, different 
concentrat ions of T E A  + ( 5 - 1 0 - 2 0 - 4 0  raM) were succes- 
sively applied to oocytes before and after the addit ion of 
10 .5 M dihydroouabain  (DHO). The results are shown in 

The composition of Barth's solution used for preparing oocytes was (in 
raM): 88 NaC1, 3 KC1, 0.82 MgSO 4, 0.41 CaC12, 0.33 Ca(NO3) 2 and 5 
HEPES (pH = 7.6). For electrophysiological experiments, Barth's so- 
lution was modified in such a way that 40 mM NaC1 was isosmotically 
replaced by a mixture of N-methyl-D-glucamine/HC1 and TEAC1, the 
TEA + concentration ([TEA+]) being either 0, 5, 10, 20 or 40 raM. This 
low Na + solution will be called the Barth* solution at the indicated 
[TEA+]. When 1 InN BaC12 was required, SO 4 and NO 3 were replaced 
by C1 in the Barth* solution. 

1 In Na+-loaded oocytes, the equilibrium potential for K + (EK) can be 
calculated to be around our experimental point of-75 inV. Intracellular 
Na + activity in these oocytes is known to increase by 20 to 70 mM [13, 
19, 26] and it is likely that intracellular K + activity ([K~] decreases by 
a similar amount. If, on average, [Ki] decreases by 40 mM, E K must 
change from -88 mV in normal oocytes [5] to -75 mV in Na+-loaded 
oocytes. 
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Fig. 1. Example of the reversibility of the TEA + 
effect on oocyte current-voltage curve. The dashed 
lines in A, B mad C represent zero current/voltage 
levels. The experiment was performed in the 
sequence 0 mM TEA + (A and open squares in D), 
40 mM TEA + (B and filled circles in D), 0 mg 
TEA + (open triangles in D) and 40 mM TEA + 
(filled semicircles in D). C shows the voltage 
pulse protocol used (holding potential = -50 mV). 
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Fig. 2. Typical example of the TEA + effect on the 
oocyte current-voltage relationship. Inset shows 
the TEA+-sensitive currents at selected membrane 
potentials as a function of TEA + concentrations. 

Figs. 2 and 3 for a typical experiment. Before pump 
inhibition (Fig. 2), the effect of  TEA + appeared strictly 
proportional to the TEA + concentration ([TEA+]) for 
negative V M while it became progressively saturable at 
positive V m. This is shown better in the insets of  Fig. 2 
where the TEA§ current (/TEA + = current with 0 
[TEA +] minus current with different [TEA+]s) is plotted 
as a function of [TEA +] for selected VMS. At -75  mV, 
/TEA+ is strictly diffusive and the average TEA+-sensitive 
current (n = 8) can be accounted for by the Goldman- 
Hodgkin-Katz equation (GHK) using a single permeabil- 
ity constant of 8.8 x 10 -s cm/sec (assuming an apparent 
membrane area of  4.5 mm 2 per oocyte as predicted for a 
spherical oocyte of  1.2 mm in diameter). For more pos- 
itive V m, as the importance of the TEA + electrodiffusion 

decreases, a saturable component of/TEA +, c a l l  be de- 
tected which is consistent with inhibition of  some out- 
ward current (a K + current, for example). For positive 
V M, the TEA + dissociation constant for blocking this cur- 
rent component was approximately 5 mM. 

When the same experiment was performed in the 
presence of 10 gM DHO (see Fig. 3), the saturable com- 
ponent of/TEA+ disappeared leaving a simple nonsatura- 
ble effect of TEA +. This component can be accurately 
fitted by the GHK equation as a function of [TEA +] (see 
Fig. 3 inset) or as a function of V m (see Fig. 4) using a 
permeability constant of 8.9 x 10 .8 cm/sec, identical to 
the permeability constant found at a V M o f - 7 5  mV in the 
absence of DHO. 

The fact that the effects of  TEA + were different in 
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Fig. 3. Typical example of the TEA + effect on the 
oocyte current-voltage relationship in the presence 
of 10 gM DHO. Inset shows the TEA+-sensitive 
currents at selected membrane potentials as a 
function of TEA + concentrations. 
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Fig. 4. Fit of the Goldman-Hodgkin-Katz equation to the TEA- 
sensitive current observed during pump inhibition. The averaged in- 
ward current (n = 8) produced by 40 m s  TEA + addition in the presence 
of 10 ~M DHO (an example of which is given in Fig. 3) was fitted using 
a permeability coefficient of  8.9 x 10 -8 cm]sec (oocyte area = 0,045 
cm2). 

the absence and in the presence of  DHO indicates that 
part of the TEA + effects were somehow linked to the 
Na+-K+-ATPase activity. By subtracting the data of Fig. 
3 from the data of  Fig. 2, one can calculate the IDHo-VM 
curves at different [TEA+]s. IDH o values averaged from 
eight different oocytes are plotted against VM in Fig. 5. 
It can be seen that TEA + has a profound effect on IDT_IO 
and that this effect reverses around -75  mV, indicative of 
an inhibitory effect of  TEA + on a K + current. Taken 
directly from the average currents of Fig. 5, the effects of  
TEA + on IDn o at different membrane potentials are rep- 
resented in Fig. 6. Dissociation constants (KD) and max- 
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Fig. 5. Averaged dihydroouabain-sensitive currents in the presence of 
TEA + concentrations varying from 0 to 40 mM. Experiments were 
performed on eight oocytes where every TEA + concentration could be 
tested, sz bars are shown only in the absence of TEA + for reasons of 
clarity. 

imal TEA+-sensitive currents (/MAX) were calculated us- 
ing a one-site ligand binding equation for the membrane 
potential range where the effects of TEA + were saturable. 
sE on the averaged TEA+-sensitive currents were used to 
obtain weighting coefficients (=USE) in the curve-fitting 
procedure (FigP version 6.0, Biosoft, Ferguson, MO) and 
error bars for KD and IMA x represent the sz correspond- 
ing to the square root of  the variance on the estimated 
parameters. KD appeared to be voltage sensitive and, at 
+50 mV, averaged 25 -+ 4 raM. 

If the effect of  TEA + on IDrto is through some K + 
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Fig. 6. Averaged TEA+-sensitive currents present in 1DHO. SE bars are 
shown only in the presence of 40 mM TEA + for reasons of clarity. The 
TEA + dissociation constant (Ko) and the maximal TEA+-sensitive cur- 
rents (/MAX) were calculated between -25 and +75 mV where the effect 
of TEA + appeared saturable. 

channels which are somehow dependent on the Na + 
pump activity, it should also be affected by Ba 2+, a volt- 
age-dependent inhibitor of  many K + channel families. 
The effect of  TEA + was therefore tested on a series of 
four oocytes bathed in a saline solution (identical to the 
Barth* solution but replacing NO~, PO 4 and SO 4 with 
C1-) containing 1 m M B a  2+. The total oocyte I-V rela- 
tionships are illustrated in Fig. 7. The most striking ef- 
fect of  Ba 2+ was to completely remove the inward dif- 
fusion of  TEA + (as seen in Fig. 2), whereas the saturable 
component remained present. As this saturable compo- 
nent was also DHO sensitive, TEA + has no effect on 
oocyte currents in the presence of  10 gM DHO and 1 mM 
Ba 2+. 

Average Irmo-V~t currents measured in the presence 
of  1 inM Ba 2+ are plotted in Fig. 8. While TEA + still had 
its effect on IDH o for VM values more positive than -75  
mV, the TEA + effect at more negative potentials disap- 
peared. This is a typical voltage-dependent effect of  
Ba 2+ on K + currents; a low concentration of  Ba 2+ is only 
effective in blocking inward K + currents. This supports 
our contention that the effect of TEA + on IDno is through 
inhibition of K + channels whose activity is closely re- 
lated to the Na + pump activity. In the presence of  Ba 2+, 
the TEA + dissociation constant for blocking this K + cur- 
rent is around 20 rnM and appears slightly voltage sen- 
sitive in the voltage range (from -50  to +75 mV) where 
the TEA+-sensitive currents are large enough to be ac- 
curately fitted with the Michaelis-Menten equation. Us- 
ing the maximal TEA+-sensitive current given by the 
Michaelis-Menten equation, the shape of  the IDHo-VM 
curve that would be obtained with a saturating [TEA +] 
could be extrapolated (Fig. 8). 
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Ba z+. A depicts the TEA + effect in the presence of an active Na + pump 
while B is in the presence of 10 gM DHO. 
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Fig. 8. Average dihydroouabain-sensitive current in the presence of 1 
mM Ba 2+ and TEA + concentrations ranging from 0 to 40 InM. Experi- 
ments were performed on four oocytes where every TEA + concentra- 
tion could be tested, sz bars are shown only in the absence of TEA + for 
reasons of clarity. Open circles represent the expected currents to be 
seen in the presence of a saturating concentration of TEA*, based on 
the voltage-dependent affinity of TEA + for blocking the putative K + 
current (Kz) varying from 20 mM at positive membrane potentials to 35 
mM at -25 mV). 

D i s c u s s i o n  

TEA + EFFECTS OBSERVED ON OOCYTE CURRENTS 

In Fig. 9, we propose a model for the oocyte that explains 
the main features of  the TEA + effects which will be 
further discussed below. The most important electro- 
physiological effect of TEA + observed in the present 
study is a simple electrodiffusion through Ba2+-sensitive 
channels (which are probably K + selective). In addition 
to these channels, TEA + can block a different class of  
channels closely associated to the Na § pump activity. 
These channels were identified as K § channels since their 
reversal potential is -75  mV and they are Ba 2+ sensitive 
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Fig. 9. Summary of the currents involved in the TEA + effects on IDH o 
in X. laevis oocytes. The proposed model includes Ba2+-sensitive TEA + 
diffusion and the TEA+-sensitive K + channel whose activity is linked to 
the Na + pump activity. 

in a voltage-dependent manner. The two types of chan- 
nels involved in the TEA § effects are thought to be dis- 
tinct since electrodiffusion of TEA § remains intact in the 
presence of  DHO while the activity of the Na§ - 
related channel becomes undetectable. 

CONTAMINATION OF IDHO WITH A K + CURRENT 

rent in IDHO is also Ba2+-sensitive (for a given voltage 
range) it is very likely that it comes from a K + channel 
whose activity " fol lows"  Na+-K+-ATPase activity. 

In 1988, Schweigert et al [23] measured IDiaO in the 
presence of 5 mMBa 2+ or 20 mM TEA + to check if/Dr{ o 
was contaminated by passive K + currents. They con- 
cluded that the general shape of the IDI_Io-V M curve was 
not affected by these K + channel blockers. Conversely, 
DHO did not affect other electrogenic transport mecha- 
nisms as long as the Na + pump was already inhibited 
using a K+-free bathing solution. While we agree on the 
latter conclusion (DHO effect on K + current is not direct 
but through Na + pump inhibition), our data contradict 
their first conclusion. As recognized by these authors 
[23], seasonal variations in the shape of the IDrIo-V M 
curve (maximal value of IDH o and in its position on the 
voltage axis) were observed. Because of  this, we feel 
that any accurate comparison between IDHo-V M curves 
needs to be done on a paired basis and that the compar- 
ison between IDHO measured in the presence of TEA + 
[23] and previously published measurements [13] is ir- 
relevant. In addition, although it was not studied sys- 
tematically, seasonal variations on the TEA + effects were 
also observed, especially for TEA + diffusion which can 
vary over a wide range. It is possible that similar vari- 
ations exist in the expression of the K § channel linked to 
the Na+-pump activity, explaining why the effect of 
TEA + remained undetected in preceding studies. 

Since 1986 [13], several laboratories have taken advan- 
tage of X. laevis oocytes to study Na§247 activ- 
ity in conditions where V M can be accurately controlled. 
Much attention was paid to the fact that Na + pump in- 
hibition is expected to decrease the [K § gradient in the 
immediate vicinity of  the membrane, which would 
change the K + current at the same time as the Na § pump 
current. The effect of such an artifact would be to shift 
the I-V relationship of the K + current toward more pos- 
itive V M values during Na § pump inhibition, which 
would produce an extra outward current (of varying am- 
plitude) in/Dr{ o at every VM including the reversal po- 
tential for K § The data presented in this study show 
something completely different and, at first sight, unex- 
pected: the effect of  TEA § on the dihydroouabain- 
sensitive current indicates that a K § current is included in 
the calculation of IDH o when it is measured in the ab- 
sence of efficient W channel blockers. This contaminat- 
ing current reverses around the expected El,: which is 
incompatible with effects due to K § accumulation/ 
depletion in extra- and intracellular unstirred layers upon 
Na § pump inhibition. For the same reason (reversal at 
EK), a direct effect of TEA § on the Na§247 is 
unlikely. For example, if TEA + interfered with K + bind- 
ing to the Na § pump, IDn o would be reduced across the 
entire voltage range studied. As the TEA+-sensitive cur- 

PUMP-COUPLED K + CHANNELS AND THE 

COUPLING MECHANISM 

The channel coupled to the Na § pump activity has a 
dissociation constant for TEA + around 20 rrtM and this 
constant appears to increase as VM is made more nega- 
tive. TEA + is known to block a variety of voltage- 
dependent K § channels in excitable tissues with apparent 
dissociation constants varying from 0.4 mM in the node 
of Ranvier [11] to 12 mM in molluscan neuron [9, 16, 
25]. Interestingly, in Rana esculenta oocytes, a voltage- 
dependent K + current involved in maintaining membrane 
potential was described as being weakly TEA § sensitive 
since 50 inn did not inhibit it completely [17]. Not 
enough is known yet about the K + channels of X. laevis 
oocytes [5] to be able to speculate on the identity of the 
K § channel functionally linked to the Na § pump. 

Neither is anything known about the mechanism 
coupling the Na § pump activity to the K + current in X. 
laevis oocytes. In other tissues, it has been shown that 
K + channels could be regulated as a function of Na + 
pump activity through changes in some internal effector 
such as pH, Ca 2§ ATP, etc. [4, 14, 21, 22]. It could also 
be due to selective internalization of  specific K + channels 
during pump inhibition or, alternatively, to the presence 
of certain pump conformations acting as K § channels. 
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It is not  known i f  the K + channel  invo lved  in the present  

exper iment  is ei ther pH  or Ca 2+ sensit ive,  but  A T P -  

sensi t ive K + channels  do not  seem to be present  in de- 

fol l iculated oocytes  as there are no effects caused by K § 

channel  openers  [28] nor  are there any effects of  sulfo- 

nylurea  ( u n p u b l i s h e d  o b s e r v a t i o n ) .  Again,  ident if icat ion 
o f  the coupl ing  m e c h a n i s m  invo lved  in the oocyte  pump-  
leak m e c h a n i s m  must  awai t  a better microscopic  (patch 

c lamp level)  knowledge  o f  the K + channels  present  on 
the oocyte  p lasma membrane .  

ESTIMATION OF THE REAL I - V  CURVE OF THE Na  PUMP 

The conclus ion supported by the present  study is that 

T E A  + does not  affect  the Na  § pump i tself  but  inhibits a 

K + current c losely  associated to it. K n o w i n g  the disso- 
ciat ion constant  and the max ima l  current  b locked  by 

T E A  +, it is possible  to predict  the shape o f  the real Na § 

pump I - V  curve. This predict ion is depicted by the dot- 
ted l ine in Fig. 8. Clearly,  using 20 mM T E A  § as has 

been done in the past, does not  appear  suff icient  to com-  

pletely e l iminate  the K § current that downregula tes  wi th  

the Na  § pump activity. F r o m  Fig. 8, it can be  conc luded  

that the absence o f  eff ic ient  K § channel  blockers  leads to 

underes t imat ion o f  the negat ive  slope in the pump I - V  

re la t ionship .  This  e f fec t  m a y  have  impor tan t  conse-  

quences  on the conclus ions  previous ly  reached using de- 

tailed kinetic analysis o f  the vol tage-dependent  proper-  
ties o f  the Na  § pump.  
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